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Abstract 
 

Lisa Feldman-Barrett, who has promoted a psychological constructivism theory of affect, recently 

proposed the Embodied Predictive Interoception Coding (EPIC) model of affect, based on the 

perspective of predictive coding. The theoretical framework of predictive coding argues that the 

brain creates inner models that can provide predictions for perception and motor movement, and 

that perception and behaviors emerge from Bayesian computations rooted in these predictions. The 

EPIC model expands this framework to interoception, which is perception of the inner body, and 

tries to explain the phenomena of affect as integrative experiences based on interoception. This 

perspective provides important implications for understanding issues of the brain–gut axis and its 

impairments. 
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Introduction 
 

The brain and gut have a tight and bidirectional functional association 
(Camilleri & Di Lorenzo, 2012). This is not surprising, considering that the neural 
system and the brain have been developed for effective regulation of digestive organs 
over the history of evolution. Thus, functional gastrointestinal diseases, such as 
irritable bowel syndrome (IBS), must be understood as impairments of the brain–gut 
functional association, and not as illnesses of only local sites in the intestines. 

The Embodied Predictive Interoception Coding (EPIC) model, which was 
proposed by Lisa Feldman-Barrett, a theorist arguing psychological constructivism 
of emotion (Feldman-Barrett, 2017; Feldman-Barrett, Quigley, & Hamilton, 2016; 
Feldman-Barrett & Simmons, 2015) can provide a useful theoretical framework to 
understand the issues of brain–gut functional association. The EPIC model is based 
on the concept of predictive coding, which hypothesizes that the brain constructs 
inner models in various functional layers, and that every function of the brain 
emerges from computations of the models and input signals. The EPIC model further 



PSYCHOLOGICAL TOPICS, 27 (2018), 1, 1-15 

 

2 

hypothesizes that all mental functions, such as perception, motor, cognition, and 
affect, can be uniformly explained by this concept. The EPIC model has not been 
completed as a systematic theory, and empirical verification of the EPIC model is 
difficult. Thus, the EPIC model is considered a meta-theory. 

However, the EPIC model is attractive because we can draw many implications 
about the association of the brain and body, and can develop many hypotheses that 
can be examined empirically. This article first introduces the EPIC model, and 
second argues implications of this model for issues of brain–gut functional 
association and its impairments. 
 

Predictive Coding 
 

The brain is not a passive organ that solely responds to input signals from 
sensory organs, but actively constructs perception based on inner models predicting 
future input signals, and on computations of differences between the predictions and 
input signals (prediction error). Such a principle of functions of the brain is called 
"predictive coding" (Friston, 2010; Friston, Kilner, & Harrison, 2006). The origin of 
this concept can be traced back to the unconscious inference of vision, which was 
proposed by Helmholtz, a physicist in the 19th century (Helmholtz, 1866/1962). 
Human vision has many limitations; for example, visual images are not clear except 
within the narrow range of the central vision, and the blind spot and vessels in the 
surface of the retina interfere with clear vision. Nevertheless, we have stable and 
clear visual experiences. Helmholtz proposed that this is because we create images 
of the external world by making inferences from limited visual signals, based on 
past experiences. As such, inferences are instantly conducted without awareness. 
Helmholtz called the process "unconscious inference." 

In the theory of predictive coding, such processes of perception in the brain are 
explained as an analogy of the principle of Bayesian statistics (Figure 1; Ainley, 
Apps, Fotopoulou, & Tsakiris, 2016). A prediction of perception by an inner model 
is represented as a probabilistic distribution. This corresponds to the prior 
distribution in Bayesian statistics. Sensory input can also be represented as a 
probabilistic distribution, and a prediction error is computed as the difference 
between the distributions of the prediction and sensory input. This sensory input 
corresponds to observation or likelihood in Bayesian statistics, and then the posterior 
distribution is computed based on updating in the theorem of Bayes. Our subjective 
experiences of perception can be considered as awareness of the computational 
processes of the posterior distribution based on the prior distribution and sensory 
input. In this framework, the prediction refers to patterns of spontaneous activity in 
neural networks in the brain. Thus, it should be noted that the prediction is a purely 
biological phenomenon, and not the result of mental activity or meaning caused by 
intention. 

One of the important factors determining experiences of perception is precision 
of the prediction and sensory input. Precision refers to the variance of a probabilistic 
distribution, and is represented in the width of the distribution (Figure 1). Precision 
of an inner model is higher for an event experienced frequently, and lower for an 
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event that is rarely encountered. However, paying attention to a target increases 
precision of the sensory input. Given a distance between the means of the prediction 
and sensory input, a subjective experience will be about centered between the 
prediction and sensory input when precisions of the prediction and sensory input are 
the same levels (Figure 1a). When precision of the prediction is high and precision 
of sensory input is low, a subjective experience will be almost completely dependent 
on the prediction, and will appear very different from the real sensory input (Figure 
1b). In addition, higher precisions of the prior and posterior distributions will result 
in a clearer experience of the perception. 

It is thought that such Bayesian computations are involved in processing in 
every modality of perception and motor function. Such computations are 
hierarchically conducted from the lowest level in sensory organs (e.g. signal 
processing in the retina) to the highest level in associative areas (e.g. goal-directed 
processing in the prefrontal cortex). Organisms, including humans, construct and 
maintain integrated and consistent images of self and the world by minimizing the 
sum of the prediction error detected in such hierarchical computations. This sum of 
the prediction error is called the "free energy", as an analogy of the theory of 
thermodynamics (Friston, 2010; Friston et al., 2006). To minimize the prediction 

 
a. Case of high precision in sensory input  b. Case of low precision in sensory input 

 

Figure 1. The principle of predictive coding (Ainley et al., 2016). The prior distribution 

represents a prediction for perception, which is produced by an inner model. Once a sensory 

signal is received, a prediction error, which is the difference between the prediction and 

sensory input, is computed. Based on the theorem of Bayes, the prior distribution is updated 

to the posterior distribution. It is thought that a subjective experience of perception emerges 

from this series of processes. In (a) and (b), the prediction is same, and the prediction error 

(distance between means of the prediction and sensory signal) is also same. However, the 

precision of the sensory signal is lower in b than in a. When the precision of the sensory input 

is low, the subjective experience of perception is almost completely determined by the 

prediction, independent from the actual sensory input (b). 
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error, the organism will either update the inner model or actively modulate the 
sensory input by changing behaviors. The former process is similar to the 
unconscious inference by Helmholtz, and the latter process is called "active 
inference." Examples of active inference include changing the distance or the visual 
angle to modulate vision by moving the body, or paying attention to and gazing at a 
target. Organisms dynamically use both of these methods to reduce the sum of the 
prediction error. This is thought of as the basic principle of the brain, and is called 
"the principle of free energy". Although this theory remains hypothetical, it is 
gaining attention in cognitive neuroscience research fields. 

 
Predictive Coding of Interoception 
 

Feldman-Barrett and her colleagues have proposed that in addition to 
exteroception (e.g. vision and hearing) and proprioception (perception of the location 
of the body and bodily movement), interoception, which is perception of the inner 
body such as inner organs and vessels, is established by the principle of predictive 
coding (Ainley et al., 2016; Feldman-Barrett et al., 2016; Feldman-Barrett & 
Simmons, 2015; Seth & Friston, 2016). Organisms have to appropriately regulate 
bodily states to maintain homeostasis. To achieve this, the brain represents the body's 
current state and its desirable state (goal), and constructs the inner model of the body 
to satisfy the goals of the body. The model determines desirable ranges of states, 
including blood pressure, blood glucose level, concentration of hormones, and 
concentration of cytokines related to immune functions, depending on specific 
situations. When the body receives input signals, the signals are compared with 
predictions by the inner model, and the differences between them are computed as 
prediction errors. Organisms regulate their bodily states to minimize the prediction 
errors. To reduce prediction errors, an organism both updates the inner model and 
alters its bodily states. 

Importantly, sensations of the inner body that are subjectively experienced are 
thought of as awareness of computational processing of the posterior probabilistic 
distribution of the bodily state from the prior distribution, and sensory input from the 
body. For example, peristaltic motion of the intestines is rarely consciously felt. This 
is because the prediction error between the prediction of the motion and the actual 
motion in the intestines is small. However, inflammation in the intestines caused by 
infection will increase the prediction error, which is then perceived as discomfort and 
pain in the intestines. Furthermore, in such a situation, precision of sensory signals 
from the intestines will increase by paying attention to the intestines, and perception 
of the intestines will become more sensitive. As a result, one can be conscious of 
even tiny movements of the intestines, sometimes perceived as pain. In this case, a 
person may stroke and press the abdomen to confirm the discomfort and to reduce 
the pain, and these actions are interpreted as attempts to minimize the prediction 
errors by active inference. 

One of the critical brain regions for predictive coding of interoception is the 
insula. The insula is a cortical region located in the temporal lobe, and receives 
signals from all parts of the body. The anterior portion of the insula is composed of 
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agranular cortex, and the posterior portion is granular cortex, which receives bodily 
signals. In addition, the posterior insula has dense neural projections from agranular 
cortices of the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC). 
These anatomical characteristics suggest that the anterior insula, and the mPFC and 
OFC, might construct the inner models of the body, and that prediction errors might 
be computed in the posterior insula (Feldman-Barrett, 2017; Feldman-Barrett et al., 
2016; Feldman-Barrett & Simmons, 2015). Furthermore, the amygdala, striatum and 
anterior cingulate cortex (ACC) also play important roles in adjusting computations 
of the predictions and predictions errors, and in linking such parameters with 
behaviors. In sum, these brain areas might work as hubs in the neural network for 
computations of predictive coding to optimally regulate functions of the brain and 
body in certain situations (Figure 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Neural mechanisms of predictive coding (adapted from Seth & Friston, 2016). 

Triangles in the figure represent groups of pyramidal neurons. Gray triangles are neurons 

computing predictions, and black triangles are neurons computing prediction errors. The 

insula, orbitofrontal cortex (OFC) and medial prefrontal cortex (mPFC), anterior cingulate 

cortex (ACC), and amygdala/striatum, which include both neurons computing predictions and 

prediction errors, are hub regions of predictive coding. Sensory areas, such as the visual area 

and somatosensory area, are granular cortices, and are involved in the input of sensory signals 

and computation of prediction errors. The area of the periaqueductal gray modulates the 

precision of interoceptive signals. 
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Functional Association among Brain, Body, and Behavior Based on Predictive 
Coding 
 

The principle of predictive coding and the EPIC model can provide interesting 
and useful explanations for empirical findings about functional associations among 
brain activity, bodily responses, and behaviors, depending on demands from different 
environments. Here, we examine findings from our laboratory on the basis of the 
EPIC model. 
 
Contingency between Stimulus and Outcome and Activities of Brain and Body 
 

We have examined how behaviors, brain activity, and physiological responses, 
including those of the autonomic, endocrine, and immune systems, are shaped by 
assessing contingencies between stimuli and outcomes (Kimura, Ohira, Isowa, 
Matsunaga, & Murashima, 2007; Ohira et al., 2009, 2010). In these studies, a 
gambling task called the stochastic learning task was used. In each trial of this task, 
human participants choose one of two options to gain monetary reward and to avoid 
monetary loss. One option is more advantageous because the option leads to reward 
at a higher probability. The other option is more disadvantageous because the 
probability of getting a reward is lower. 

Behavioral characteristics of this task are well represented by a computational 
model called reinforcement learning (Lee, Seo, & Jung, 2012). One of the typical 
algorithms of reinforcement learning, Q learning, is represented as follows: 
 

𝑄(𝑎(𝑡+1))(𝑡 + 1) = 𝑄𝑎(𝑡)(𝑡)+∝ (𝑅(𝑡 + 1) − 𝑄𝑎(𝑡)(𝑡)),   (1) 

𝑃(𝑎(𝑡)) =
1

1+exp[−𝛽(𝑄𝑎(𝑡)−𝑄𝑏(𝑡))]
.   (2) 

 
Here, Qi(t)(t) in equation (1) represents values of two options, i = a or b, at time 

point, t. This variable corresponds to the predictions about reward delivered by the 
options, computed by the inner model. If the choice of option a at the next time point 
can provide reward R(t+1), the difference between the reward and the prediction of 
the value Qa(t)(t) is the prediction error, represented as R(t + 1) – Qa(t)(t) in equation 
(1). The value is then updated to minimize this prediction error. A positive score of 
the prediction error means a better outcome compared with the prediction, thus the 
value of the option will be increased. A negative score of the prediction error means 
a worse outcome compared with the prediction, thus the value of the option is 
decreased. In this way, the values of the two options are continuously updated, and 
based on the values, a probability of choice of option a at time point t can be 
represented as a function described in equation (2). Updating of values described in 
equation (1) is thought to occur in a region of the ventral striatum called the nucleus 
accumbens. Choices based on the values are thought to be conducted in a neural 
network including the dorsal striatum and the ACC (Lee et al., 2012). Thus, 
computations by predictive coding regarding values of options are completed mainly 
in the striatum during this task. 
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We used two experimental groups in this task (Kimura et al., 2007); in one group, 
one option was linked with monetary reward at a probability of 70%, and the other 
option was linked with reward at 30% (Reinforcement). In the other group, reward 
for a participant was delivered with the matched timing to a paired participant in the 
Reinforcement group, but was unrelated to the choices by the participant (Control). 
Importantly, the total volume and delivery timing of the reward were the same 
between the two participants in both groups. However, the participant in the 
Reinforcement group was able to learn the contingencies between the options and 
outcomes, whereas the participant in the Control group was not. Psychologically, this 
is called a yoked paradigm. In the Reinforcement group, it is thought that a large 
prediction error for reward occurs at the beginning of the task, and the prediction 
error becomes smaller as learning progresses. In contrast, the prediction error 
remains large in the Control group. 

The response bias (rate of choice for the advantageous option) in the 
Reinforcement group converged at about 80%, through a typical learning curve 
(Figure 3a). The response bias in the Control group remained at about 50% through 
the end of the task, suggesting that the participants in the Control group continued 
efforts to search for contingencies between options and outcomes. Interestingly, 
physiological responses showed clear differentiations between the two groups. The 
Reinforcement group consistently indicated stronger responses in immune 
(proportion of natural killer cells; Figure 3b) and autonomic [systolic blood pressure 
(Figure 3c) and diastolic blood pressure (Figure 3d)] responses, whereas the 
physiological responses were remarkably suppressed in the Control group. Such a 
differentiation of physiological responses depending on the contingencies between 
stimuli and outcomes in a similar behavioral task has been robustly replicated in 
another study (Ohira et al., 2009). During the task, brain activation was observed in 
the ACC, OFC, and striatum (Figure 4; Ohira et al., 2009, 2010), which are the hub 
regions of predictive coding described in Figure 2. In addition, the activation was 
more dominant in the Control group compared with the Reinforcement group, 
suggesting that physiological responses decreased in the Control group not because 
they abandoned efforts for learning, but because they continued efforts to reduce the 
reward prediction error. 
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Figure 3. Changes of response bias, proportion of natural killer (NK) cells in peripheral blood, 

and blood pressure, during the stochastic learning task (Kimura et al., 2007). (a) In the 

Reinforcement learning group, the rate of choices of the advantageous option (response bias) 

gradually increased. In the Control group, the rate of choice for both options remained almost 

equal at the end of the task. (b) In the Reinforcement group, proportions of NK cells in blood 

remarkably increased at the initiation of the task, and were maintained at a high level during 

the task. In the Control group, the change of NK cells was suppressed. Systolic blood pressure 

(c) and diastolic blood pressure (d) also showed the similar differentiated patterns between 

the two groups. 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 4. Brain and body activity during a stochastic learning task. (a) Brain activity measured 

by positron emission tomography during the stochastic learning task (Ohira et al., 2010). A: 
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anterior cingulate cortex, B: cerebellum, C: left dorsolateral prefrontal cortex, D: pons, E: 

right dorsolateral prefrontal cortex, F: orbitofrontal cortex. Activation in the striatum was also 

observed, especially in the Reinforcement group (not shown in the figure). (b) Schematic 

expression of hierarchical predictive coding. In the Reinforcement group, the precision of the 

model in reward computation increases, thus physiological responses in the body are strongly 

affected. In the Control group, the precision in the model of reward computation is maintained 

at a lower level, and continuous updating is conducted in the higher level of the brain. For the 

body, both sympathetic and parasympathetic influences are sent, the offset processing of 

which suppress physiological responses. PFC: prefrontal cortex. STR: striatum. AMG: 

amygdala. 

These findings can be interpreted in the context of the EPIC model (Figure 4b). 
The reward system should be the core system in the hierarchical system of predictive 
coding. The reward system can affect the higher system that maintains goals and 
contexts (probably in the PFC), by providing signals of the reward prediction errors. 
Furthermore, the reward system can affect the lower system, which regulates bodily 
states, by providing signals of the predictions (Figure 5; Smith, Thayer, Khalsa, & 
Lane, 2017). In the Reinforcement group, computations for reward will rapidly 
converge, and precision of the inner model will improve, through sampling of the 
outcome in each trial. This signal reduces the prediction errors in models about goals 
and contexts in the higher system, resulting in the formation of stable strategies for 
coping. The computations for reward will also affect the lower system, and will alter 
bodily responses in a manner that is consistent with the prediction delivered from the 
reward system. In this case, the set point of the autonomic activity level will be 
upregulated to increase bodily activity for behaviors to get a reward. Such processes 
would cause increases in the activities of the autonomic and immune systems 
described in Figure 3. In the Control group, computations of reward do not converge, 
thus signals of the reward prediction error sent to the higher system remain large. As 
a result, higher inner models in the PFC areas continue to work at updating the 
models. Stronger activation of the PFC areas shown in Figure 4a might reflect such 
activity in the PFC. Simultaneously, in the lower system, signals facilitating activity 
of the sympathetic nervous system, to promote approach behaviors to get a reward, 
and signals facilitating activity of the parasympathetic nervous system, to promote 
avoidance behaviors to prevent loss, will be sent. As a result of contamination of 
these sympathetic and parasympathetic signals, physiological responses in the 
autonomic and immune systems will be suppressed. Indeed, the power of the high 
frequency component in heart rate variability (HRV), which is an index of activation 
of the parasympathetic nervous system, was remarkably elevated in the Control 
group (Ohira et al., 2010). 
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Responses to Change of Contingency: Heart Rate Variability as  
an Index Reflecting Precision of Inner Models 

 
Both in natural environments and in social environments, the contingency 

between stimulus–behavior–outcome is not fixed, but alters as time passes. For 
example, it is not guaranteed that an animal can get food at the same place where it 
got food in the past. Or, a strategy to attract a female for an animal is not necessarily 
effective at the next opportunity. Organisms must change behaviors to follow such 
alterations of the contingency. This ability is called goal-directed action (Pezzulo, 
van der Meer, Lansink, & Pennartz, 2014). 

Goal-directed action is a function that occurs at a higher level of predictive 
coding, and is thought to involve the PFC and dorsomedial striatum. From the 
perspective of the EPIC model, higher precision of the higher level inner model leads 
to stronger influences of prediction signals on lower system, and as a result, the 
ability to flexibly regulate behaviors and physiological responses will be more 
dominant (Pezzulo, Rigoli, & Friston, 2015; Smith et al., 2017). Smith et al. (2017) 
have argued that HRV is a good index of the precision of the inner models for goal-
directed action occurring in the PFC areas. HRV is a measure of fluctuations in the 
intervals of heart beats. However, in addition to cardiac function, it is thought that 
HRV can be used as an index of the brain's ability to regulate various bodily states 
(Thayer, Ahs, Fredrikson, Sollers, & Wager, 2012). 

To examine such a theoretical hypothesis, we observed the activity of the brain 
and several physiological responses while participants in groups with higher and 
lower tonic HRV levels performed a stochastic reversal learning task in which the 
stimulus–behavior–outcome contingency changes (Ohira et al., 2013). The 
stochastic reversal learning task is also a gambling task. In this task, an advantageous 
option and a disadvantageous option are suddenly reversed during the task, requiring 
participants to suppress previously dominant behaviors and re-learn a new 
contingency. The high HRV group consistently showed higher levels of reactivity in 
indices of autonomic, endocrine, and immune systems. Furthermore, activation in 
the OFC, ACC, insula, and striatum (hub regions of predictive coding; Figure 2) 
indicated significant correlations with the physiological indices. These results seem 
consistent with the hypothesis by Smith et al. (2017). Namely, the participants in the 
high HRV group can sensitively detect the change of contingency by the higher 
system for the goal-directed action, thus the higher system can effectively regulate 
various physiological responses by sending prediction signals with higher precision. 
In the low HRV group, both brain activity and physiological responses showed 
blunted reactivity to the change of contingency. It is suggested that participants in the 
low HRV might be less sensitive to the change of contingency, probably because 
their functioning of goal-directed action has declined. 

The empirical findings described in this section seem to support the theoretical 
framework of the EPIC model. It has been suggested that the EPIC model is also 
useful to explain psychosomatic problems, such as issues of the brain–gut axis, and 
mechanisms of psychosomatic diseases. 
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Computational Psychosomatics:  
Implications for Issues of the Brain–Gut Axis 

 
The concepts of predictive coding and the EPIC model have been expanded to 

psychosomatic medicine (Petzschner, Weber, Gard, & Stephan, 2017). 
Psychosomatic medicine is concerned with various somatic diseases that are caused 
or influenced by mental processes (Fava & Sonino, 2010). Applications of the 
computational models to psychosomatic medicine are still rare (but see de Berker et 
al., 2016; Fineberg, Steinfeld, Brewer, & Corlett, 2014). However, these can provide 
a unified explanation for the underlying mechanisms of different symptoms. As 
described above, important components of predictive coding are the prior 
distribution (prediction), sensory input, prediction error, and precision. 
Psychosomatic symptoms can be considered to be caused by impairments of these 
components. 

For example, depression is sometimes accompanied by somatic disorders such 
as cardiac, immunological, and metabolic disturbances (Joynt, Whallen, & O'Connor, 
2003; Renn, Feiciano, & Segal, 2011). In the framework of the EPIC model, this can 
be explained as persistent effects of impaired high-level inner models predicting 
uncontrollability and uncertainty of environments with higher precisions (strong 
negative beliefs) on functions in allostatic control regions, such as the insula and 
ACC, or on autonomic effector regions, such as the hypothalamus and periaqueductal 
gray (Figure 2), leading to an allostatic load resulting in somatic disturbances. An 
alternative possibility is that depression is caused by a reaction to an initial somatic 
disease. Systemic inflammation mediated by increased proinflammatory cytokines, 
such as IL-6 and TNF-α, can affect brain functions and are linked with the onset of 
depression (Dantzer, O'Connor, Freund, Johnson, & Kelley, 2008). This might 
provide greater prediction errors in the above described allostatic control regions, 
leading to updating of the inner models in the negative direction, accompanied by 
hedonically negative affective states. 

Another typical example of psychosomatic disease is the functional digestive 
disorder, IBS. The diagnosis of IBS is based on identification of the following 
symptoms in the Rome III criteria (Camilleri & Di Lorenzo, 2012): recurrent 
abdominal pain and discomfort for at least 3 days per month in the last 3 months, and 
no evidence of inflammatory, anatomic, metabolic, or neoplastic processes that 
explain the symptoms. In addition, three main determinants have been considered for 
IBS: psychosocial factors, altered motility, and altered sensation. Given no evidence 
of organic disturbances in IBS, it is assumed that the main cause of this disease is in 
impaired processes in the brain–gut axis. First, it is hypothesized that the abnormal 
inner models in the control regions of the intestines with high precision might 
continuously produce a perception related to pain and discomfort in the intestines, 
even though sensory signals from the intestines are normal. However, large 
prediction errors in states of the intestines between the predictions from the inner 
models in the brain and actual states of the intestine should be minimized following 
the principle of predictive coding. As precisions of the inner models are extremely 
high, one of the dominant ways to minimize the prediction error is alteration of 
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motility of the intestine. In this way, the brain-driven abnormalities in the intestine in 
IBS result in alterations in defecation and in frequency and form of stool. 

We conducted a neuroimaging study for IBS by using O15-PET (Kanazawa et 
al., 2007). In this study, a polyethylene balloon was inserted in the rectum of patients 
of IBS and healthy controls. The air pressure was gradually increased, and the 
participants in both groups evaluated subjective pain and discomfort during the task. 
Also, their brain activation was measured during the task by PET. As expected, 
compared with the normal controls, the IBS patients showed remarkably lower 
thresholds of air pressure that caused subjective pain for the physical stimulation of 
their rectum. More importantly, the anterior insula showed greater activation during 
the task in the IBS patients than in the normal controls (Figure 5). As no difference 
in brain activity between the IBS patients and normal controls was identified in the 
somatosensory areas, the reported sensitivity for stimulation of the rectum in the IBS 
patients does not appear to involve the bottom-up processes of the rectum. Rather, it 
is assumed that their enhanced sensitivity can be attributed to the top-down processes 
that are rooted in abnormal and highly precise inner models located in the anterior 
insula. The pain and discomfort in the rectum perceived by the IBS patients were real, 
however they were produced in their brains. 

For diseases of the brain–gut axis, the following causes should be considered 
(Petzschner et al., 2017): (1) A real bodily source of dyshomeostasis in the intestines, 
(2) altered sensations in the intestines, (3) altered prediction caused by impaired inner 
models in the brain, or (4) inadequate control by the brain over autonomic, endocrine, 
and immunological responses, based on computations of predictions and prediction 
errors of sensations in the intestines. 

This perspective could be used to produce hypotheses that can be empirically 
examined, and thus will be beneficial to identify specific causes of diseases and to 
develop effective treatments. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Activation of the right anterior insula (white circle) during stimulation of the rectum 

in patients of irritable bowel syndrome. Brain activation was shown by a subtraction analysis 

of patients of irritable bowel syndrome minus healthy controls (Kanazawa et al., 2007). 
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Conclusion 

 
This article introduced basic concepts of predictive coding and the EPIC model 

as an expansion of predictive coding to interoception. Although these theoretical 
perspectives are still under debate for their validity, these models can provide unified 
explanations for many phenomena involving functional associations of the brain and 
body, accompanying a wide range of mental phenomena and behaviors, such as 
perception, cognition, affect, learning, and decision-making. This article also 
introduced examples of empirical data about the brain–body functional association, 
particularly that accompanying learning, and showed that those data can be explained 
by the theoretical perspectives of predictive coding and the EPIC model. Although 
the evidence described in this article is qualitative, quantitative verification of the 
hypothesized models for the brain–body functional association based on empirical 
data should be possible, for example using statistical modeling by the hierarchical 
Bayesian model (de Berker et al., 2016). 

Furthermore, predictive coding and the EPIC model can be expanded to 
psychosomatic medicine, and disorders of the brain–gut axis provide good examples 
of such an expansion. Causes of disturbances in the function of the brain–gut axis, 
such as IBS, can be classified and examined in detail by applying the theoretical 
framework of predictive coding and the EPIC model. Such efforts will be beneficial 
to develop new effective treatments for diseases in the brain–gut axis. 
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Regulación de funciones del cerebro y el cuerpo según el principio  
de codificación predictiva: Implicaciones para la discapacidad  

del eje cerebro-intestino 
 

Resumen 
 

Lisa Feldman-Barrett, que promovió la teoría constructivista del afecto, recientemente ha propuesto 

el modelo de afecto la Codificación predictiva incorporada de la interocepción (EPIC), basado en la 

perspectiva de la codificación predictiva. El marco teórico de la codificación predictiva discute los 

hechos de que el cerebro crea modelos internos que puedan facilitar predicciones para la percepción 

y las habilidades motoras, y de que la percepción y la conducta surgen de los cálculos bayesianos 

que se basan en estas predicciones. El modelo EPIC expande este marco a la interocepción – la 

percepción del cuerpo interno, y trata de explicar el fenómeno de afecto como experiencia 

integrativa basada en la interocepción. Esta perspectiva ofrece implicaciones importantes para 

entender los problemas del eje cerebro-intestino y sus discapacidades. 

 

Palabras clave: interocepción, codificación predictiva, eje cerebro-intestino 
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